Michael Lindenbaum

Professor Emeritus

    1987 …2025

    Research activity per year

    Search results

    • 2025

      Dataset of polarimetric images of mechanically generated water surface waves coupled with surface elevation records by wave gauges linear array

      Ginio, N., Lindenbaum, M., Fishbain, B. & Liberzon, D., Feb 2025, In: Data in Brief. 58, 111267.

      Research output: Contribution to journalArticlepeer-review

      Open Access
    • Wave (from) polarized light learning (WPLL) method: High resolution spatio-temporal measurements of water surface waves in laboratory setups

      Ginio, N., Lindenbaum, M., Fishbain, B. & Liberzon, D., Feb 2025, In: Applied Ocean Research. 155, 104457.

      Research output: Contribution to journalArticlepeer-review

      Open Access
    • 2024

      Assessing Hierarchies by Their Consistent Segmentations

      Gutman, Z., Vij, R., Najman, L. & Lindenbaum, M., 2024, (Accepted/In press) In: Journal of Mathematical Imaging and Vision.

      Research output: Contribution to journalArticlepeer-review

      Open Access
    • 2023

      Efficient machine learning method for spatio-temporal water surface waves reconstruction from polarimetric images

      Ginio, N., Liberzon, D., Lindenbaum, M. & Fishbain, B., May 2023, In: Measurement Science and Technology. 34, 5, 055801.

      Research output: Contribution to journalArticlepeer-review

    • 2020

      DPDist: Comparing Point Clouds Using Deep Point Cloud Distance

      Urbach, D., Ben-Shabat, Y. & Lindenbaum, M., 2020, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). p. 545-560 16 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)).

      Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    • Enhancing generic segmentation with learned region representations

      Isaacs, O., Shayer, O. & Lindenbaum, M., 2020, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. p. 12943-12952 10 p. (Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition).

      Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    • On the minimal recognizable image patch

      Fonaryov, M. & Lindenbaum, M., 2020, Proceedings - International Conference on Pattern Recognition. p. 6734-6741 8 p. (Proceedings - International Conference on Pattern Recognition).

      Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    • Seeing Things in Random-Dot Videos

      Dagès, T., Lindenbaum, M. & Bruckstein, A. M., 2020, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). p. 195-208 14 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)).

      Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    • 2019

      Nesti-net: Normal estimation for unstructured 3D point clouds using convolutional neural networks

      Ben-Shabat, Y., Lindenbaum, M. & Fischer, A., Jun 2019, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. p. 10104-10112 9 p. (Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition).

      Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    • 2018

      3DmFV: Three-dimensional point cloud classification in real-time using convolutional neural networks

      Ben-Shabat, Y., Lindenbaum, M. & Fischer, A., Oct 2018, In: IEEE Robotics and Automation Letters. 3, 4, p. 3145-3152 8 p.

      Research output: Contribution to journalConference articlepeer-review

    • Graph based over-segmentation methods for 3D point clouds

      Ben-Shabat, Y., Avraham, T., Lindenbaum, M. & Fischer, A., Sep 2018, In: Computer Vision and Image Understanding. 174, p. 12-23 12 p.

      Research output: Contribution to journalArticlepeer-review

      Open Access
    • 2017

      Increasing CNN Robustness to Occlusions by Reducing Filter Support

      Osherov, E. & Lindenbaum, M., 22 Dec 2017, Proceedings of the IEEE International Conference on Computer Vision. p. 550-561 12 p. (Proceedings of the IEEE International Conference on Computer Vision).

      Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    • 2016

      Graph based over-segmentation of 3D point cloud representation of urban scenes

      Ben-Shabat, Y., Avraham, T., Elbaz, G., Fischer, A. & Lindenbaum, M., 2016.

      Research output: Contribution to conferencePaperpeer-review

    • Interpreting the ratio criterion for matching SIFT descriptors

      Kaplan, A., Avraham, T. & Lindenbaum, M., 2016, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). p. 697-712 16 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)).

      Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    • Local Variation as a Statistical Hypothesis Test

      Baltaxe, M., Meer, P. & Lindenbaum, M., 1 Apr 2016, In: International Journal of Computer Vision. 117, 2, p. 131-141 11 p.

      Research output: Contribution to journalArticlepeer-review

      Open Access
    • Registration of Point Clouds based on Global Super-Point Features using Auto-Encoder Deep Neural Network

      Elbaz, G., Avraham, T., Ben-Shabat, Y., Lindenbaum, M. & Fischer, A., 2016.

      Research output: Contribution to conferencePaperpeer-review

    • 2014

      Approximating hierarchical MV-sets for hierarchical clustering

      Glazer, A., Weissbrod, O., Lindenbaum, M. & Markovitch, S., 2014, Advances in Neural Information Processing Systems. January ed. Vol. 2. p. 999-1007 9 p. (Advances in Neural Information Processing Systems).

      Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    • Learning appearance transfer for person re-identification

      Avraham, T. & Lindenbaum, M., 2014, Advances in Computer Vision and Pattern Recognition. p. 231-246 16 p. (Advances in Computer Vision and Pattern Recognition; vol. 56).

      Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

    • The cues in "dependent multiple cue integration for robust tracking" are independent

      Leichter, I., Lindenbaum, M. & Rivlin, E., Mar 2014, In: IEEE Transactions on Pattern Analysis and Machine Intelligence. 36, 3, p. 620-621 2 p., 5567110.

      Research output: Contribution to journalReview articlepeer-review

    • 2013

      Beyond independence: An extension of the a contrario decision procedure

      Myaskouvskey, A., Gousseau, Y. & Lindenbaum, M., Jan 2013, In: International Journal of Computer Vision. 101, 1, p. 22-44 23 p.

      Research output: Contribution to journalArticlepeer-review

    • One-class background model

      Glazer, A., Lindenbaum, M. & Markovitch, S., 2013, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). PART 1 ed. p. 301-307 7 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)).

      Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    • Q-OCSVM: A q-quantile estimator for high-dimensional distributions

      Glazer, A., Lindenbaum, M. & Markovitch, S., 2013, In: Advances in Neural Information Processing Systems.

      Research output: Contribution to journalConference articlepeer-review

    • Transitive re-identification

      Brand, Y., Avraham, T. & Lindenbaum, M., 2013.

      Research output: Contribution to conferencePaperpeer-review

      Open Access
    • 2012

      A segmentation quality measure based on rich descriptors and classification methods

      Peles, D. & Lindenbaum, M., 2012, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). p. 398-410 13 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)).

      Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    • Blind adaptive sampling of images

      Devir, Z. & Lindenbaum, M., Apr 2012, In: IEEE Transactions on Image Processing. 21, 4, p. 1478-1487 10 p., 6112220.

      Research output: Contribution to journalArticlepeer-review

    • Feature shift detection

      Glazer, A., Lindenbaum, M. & Markovitch, S., 2012, Proceedings - International Conference on Pattern Recognition. p. 1383-1386 4 p. (Proceedings - International Conference on Pattern Recognition).

      Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    • Learning high-density regions for a generalized kolmogorov-smirnov test in high-dimensional data

      Glazer, A., Lindenbaoum, M. & Markovitch, S., 2012, Advances in Neural Information Processing Systems. p. 728-736 9 p. (Advances in Neural Information Processing Systems).

      Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    • Learning implicit transfer for person re-identification

      Avraham, T., Gurvich, I., Lindenbaum, M. & Markovitch, S., 2012, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). PART 1 ed. p. 381-390 10 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)).

      Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    • 2011

      Dense mirroring surface recovery from 1D homographies and sparse correspondences

      Rozenfeld, S., Shimshoni, I. & Lindenbaum, M., 2011, In: IEEE Transactions on Pattern Analysis and Machine Intelligence. 33, 2, p. 325-337 13 p., 5432221.

      Research output: Contribution to journalArticlepeer-review

    • Modeling Combined Proximity-Similarity Effects in Visual Search

      Avraham, T., Yeshurun, Y. & Lindenbaum, M., 1 Sep 2011, In: Journal of Vision. 11, p. 1295 1 p.

      Research output: Contribution to journalArticlepeer-review

    • Multiple region categorization for scenery images

      Avraham, T., Gurvich, I. & Lindenbaum, M., 2011, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). PART 1 ed. p. 38-47 10 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)).

      Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

      Open Access
    • Nonnegative matrix factorization with earth mover's distance metric for image analysis

      Sandler, R. & Lindenbaum, M., 2011, In: IEEE Transactions on Pattern Analysis and Machine Intelligence. 33, 8, p. 1590-1602 13 p., 5703094.

      Research output: Contribution to journalArticlepeer-review

    • 2010

      Esaliency (extended saliency): Meaningful attention using stochastic image modeling

      Avraham, T. & Lindenbaum, M., Apr 2010, In: IEEE Transactions on Pattern Analysis and Machine Intelligence. 32, 4, p. 693-708 16 p., 4798170.

      Research output: Contribution to journalArticlepeer-review

    • Mean Shift tracking with multiple reference color histograms

      Leichter, I., Lindenbaum, M. & Rivlin, E., Mar 2010, In: Computer Vision and Image Understanding. 114, 3, p. 400-408 9 p.

      Research output: Contribution to journalArticlepeer-review

    • Non-local characterization of scenery images: Statistics, 3D reasoning, and a generative model

      Avraham, T. & Lindenbaum, M., 2010, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). PART 5 ed. p. 99-112 14 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)).

      Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

      Open Access
    • 2009

      Boundary ownership by lifting to 2.1D

      Leichter, I. & Lindenbaum, M., 2009, Proceedings of the IEEE International Conference on Computer Vision. p. 9-16 8 p. (Proceedings of the IEEE International Conference on Computer Vision).

      Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    • Nonnegative matrix factorization with Earth Mover's Dmetric

      Sandler, R. & Lindenbaum, M., 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009. p. 1873-1880 8 p. (2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009).

      Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    • Optimizing gabor filter design for texture edge detection and classification

      Sandler, R. & Lindenbaum, M., Sep 2009, In: International Journal of Computer Vision. 84, 3, p. 308-324 17 p.

      Research output: Contribution to journalArticlepeer-review

    • Tracking by affine kernel transformations using color and boundary cues

      Leichter, I., Lindenbaum, M. & Rivlin, E., 2009, In: IEEE Transactions on Pattern Analysis and Machine Intelligence. 31, 1, p. 164-171 8 p.

      Research output: Contribution to journalArticlepeer-review

    • 2008

      Bittracker - A bitmap tracker for visual tracking under very general conditions

      Leichter, I., Lindenbaum, M. & Rivlin, E., Sep 2008, In: IEEE Transactions on Pattern Analysis and Machine Intelligence. 30, 9, p. 1572-1588 17 p.

      Research output: Contribution to journalArticlepeer-review

    • Generalised blind sampling of images

      Devir, Z. & Lindenbaum, M., 2008, Proceedings - International Conference on Image Processing, ICIP. p. 2904-2907 4 p. (Proceedings - International Conference on Image Processing, ICIP).

      Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    • Predicting visual search performance by quantifying stimuli similarities

      Avraham, T., Yeshurun, Y. & Lindenbaum, M., 17 Apr 2008, In: Journal of Vision. 8, 4, 9.

      Research output: Contribution to journalArticlepeer-review

      Open Access
    • Unsupervised estimation of segmentation quality using nonnegative factorization

      Sandler, R. & Lindenbaum, M., 2008, 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR. (26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR).

      Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    • 2007

      Adaptive range sampling using a stochastic model

      Devir, Z. & Lindenbaum, M., Mar 2007, In: Journal of Computing and Information Science in Engineering. 7, 1, p. 20-25 6 p.

      Research output: Contribution to journalArticlepeer-review

    • Evaluating the ability of visual search models suggested for computer-vision to predict human performance

      Yeshurun, Y., Avraham, T. & Lindenbaum, M., 2007, In: Journal of Vision. 7, 9, p. 722-722 1 p.

      Research output: Contribution to journalArticlepeer-review

    • Surface dependent representations for illumination insensitive image comparison

      Osadchy, M., Jacobs, D. W. & Lindenbaum, M., Jan 2007, In: IEEE Transactions on Pattern Analysis and Machine Intelligence. 29, 1, p. 98-111 14 p.

      Research output: Contribution to journalArticlepeer-review

      Open Access
    • The analysis of saliency processes and its application to grouping cues design

      Golubchyck, R. & Lindenbaum, M., 2007, CBMI'2007 - 2007 International Workshop on Content-Based Multimedia Indexing, Proceedings. p. 18-24 7 p. (CBMI'2007 - 2007 International Workshop on Content-Based Multimedia Indexing, Proceedings).

      Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    • Visual tracking by affine kernel fitting using color and object boundary

      Leichter, I., Lindenbaum, M. & Rivlin, E., 2007.

      Research output: Contribution to conferencePaperpeer-review

    • 2006

      A general framework for combining visual trackers - The "black boxes" approach

      Leichter, I., Lindenbaum, M. & Rivlin, E., May 2006, In: International Journal of Computer Vision. 67, 3, p. 343-363 21 p.

      Research output: Contribution to journalReview articlepeer-review

    • A probabilistic analysis of trie-based sorting of large collections of line segments in spatial databases

      Lindenbaum, M., Samet, H. & Hjaltason, G. R., 2006, In: SIAM Journal on Computing. 35, 1, p. 22-58 37 p.

      Research output: Contribution to journalArticlepeer-review