TY - JOUR
T1 - A-A*pex
T2 - 17th International Symposium on Combinatorial Search, SoCS 2024
AU - Zhang, Han
AU - Salzman, Oren
AU - Felner, Ariel
AU - Ulloa, Carlos Hernández
AU - Koenig, Sven
N1 - Publisher Copyright:
© 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2024
Y1 - 2024
N2 - In the multi-objective search problem, a typical task is to compute the Pareto frontier, i.e., the set of all undominated solutions. However, computing the entire Pareto frontier can be very time-consuming, and in practice, we often have limited deliberation time. Therefore, this paper focuses on solving the multi-objective search problem with anytime algorithms, which compute an initial approximate frontier quickly and then work to find more solutions until eventually finding the entire Pareto frontier. Existing work has investigated such anytime algorithms for problem instances with only two objectives. In this paper, we propose Anytime A*pex (AA*pex), which works with any number of objectives. In each iteration of A-A*pex, it runs A*pex, a state-of-the-art approximate multi-objective search algorithm, to compute more solutions. From one iteration to the next, A-A*pex can either reuse its previous search effort or restart from scratch. Our experimental results show that an A-A*pex variant that mixes reusing its search effort and restarting from scratch yields the best runtime performance. We also show that A-A*pex often computes solutions that collectively approximate the Pareto frontier much better than the solutions found by state-of-theart multi-objective search algorithms for short deliberation times.
AB - In the multi-objective search problem, a typical task is to compute the Pareto frontier, i.e., the set of all undominated solutions. However, computing the entire Pareto frontier can be very time-consuming, and in practice, we often have limited deliberation time. Therefore, this paper focuses on solving the multi-objective search problem with anytime algorithms, which compute an initial approximate frontier quickly and then work to find more solutions until eventually finding the entire Pareto frontier. Existing work has investigated such anytime algorithms for problem instances with only two objectives. In this paper, we propose Anytime A*pex (AA*pex), which works with any number of objectives. In each iteration of A-A*pex, it runs A*pex, a state-of-the-art approximate multi-objective search algorithm, to compute more solutions. From one iteration to the next, A-A*pex can either reuse its previous search effort or restart from scratch. Our experimental results show that an A-A*pex variant that mixes reusing its search effort and restarting from scratch yields the best runtime performance. We also show that A-A*pex often computes solutions that collectively approximate the Pareto frontier much better than the solutions found by state-of-theart multi-objective search algorithms for short deliberation times.
UR - http://www.scopus.com/inward/record.url?scp=85196632375&partnerID=8YFLogxK
U2 - 10.1609/socs.v17i1.31556
DO - 10.1609/socs.v17i1.31556
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.conferencearticle???
AN - SCOPUS:85196632375
SN - 2832-9171
VL - 17
SP - 179
EP - 187
JO - The International Symposium on Combinatorial Search
JF - The International Symposium on Combinatorial Search
IS - 1
Y2 - 6 June 2024 through 8 June 2024
ER -