Abstract
This paper studies the theoretical guarantees of the classical projected gradient and conditional gradient methods applied to constrained optimization problems with biased relative-error gradient oracles. These oracles are used in various settings, such as distributed optimization systems or derivative-free optimization, and are particularly common when gradients are compressed, quantized, or estimated via finite differences computations. Several settings are investigated: Optimization over the box with a coordinate-wise erroneous gradient oracle, optimization over a general compact convex set, and three more specific scenarios. Convergence guarantees are established with respect to the relative-error magnitude, and in particular, we show that the conditional gradient is invariant to relative-error when applied over the box with a coordinate-wise erroneous gradient oracle, and the projected gradient maintains its convergence guarantees when optimizing a nonconvex objective function.
Original language | English |
---|---|
Pages (from-to) | 17313-17332 |
Number of pages | 20 |
Journal | Proceedings of Machine Learning Research |
Volume | 235 |
State | Published - 2024 |
Event | 41st International Conference on Machine Learning, ICML 2024 - Vienna, Austria Duration: 21 Jul 2024 → 27 Jul 2024 |
ASJC Scopus subject areas
- Artificial Intelligence
- Software
- Control and Systems Engineering
- Statistics and Probability