Abstract
Given a graph G and a spanning tree T of G, we say that T is a tree t-spanner of G if the distance between every pair of vertices in T is at most t times their distance in G. The problem of finding a tree t-spanner minimizing t is referred to as the Minimum Max-Stretch spanning Tree (MMST) problem. This paper concerns the MMST problem on unweighted graphs. The problem is known to be NP-hard, and the paper presents an O(log n) approximation algorithm for it.
Original language | English |
---|---|
Pages | 254-263 |
Number of pages | 10 |
State | Published - 2005 |
Event | Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms - New Orleans, LA., United States Duration: 11 Jan 2004 → 13 Jan 2004 |
Conference
Conference | Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms |
---|---|
Country/Territory | United States |
City | New Orleans, LA. |
Period | 11/01/04 → 13/01/04 |
ASJC Scopus subject areas
- Software
- General Mathematics