TY - JOUR
T1 - ATF3 expression in cardiomyocytes preserves homeostasis in the heart and controls peripheral glucose tolerance
AU - Kalfon, Roy
AU - Koren, Lilach
AU - Aviram, Sharon
AU - Schwartz, Ortal
AU - Hai, Tsonwin
AU - Aronheim, Ami
N1 - Publisher Copyright:
© 2016 The Author.
PY - 2017/2
Y1 - 2017/2
N2 - Aims Obesity and type 2 diabetes (T2D) trigger a harmful stress-induced cardiac remodeling process known as cardiomyopathy. These diseases represent a serious and widespread health problem in the Western world; however the underlying molecular basis is not clear. ATF3 is an 'immediate early' gene whose expression is highly and transiently induced in response to multiple stressors such as metabolic, oxidative, endoplasmic reticulum and inflammation, stressors that are involved in T2D cardiomyopathy. The role of ATF3 in diabetic cardiomyopathy is currently unknown. Our research has aimed to study the effect of ATF3 expression on cardiomyocytes, heart function and glucose homeostasis in an obesity-induced T2D mouse model. Methods and results We used wild type mice (WT) as well as mutant mice with a cardiac-specific ATF3 deficiency (ATF3-cKO). Mice were fed a high-fat diet (HFD) for 15 weeks. HFD induced high ATF3 expression in cardiomyocytes. Mice were examined for cardiac remodeling processes and the diabetic state was assessed. HFD-fed ATF3-cKO mice exhibited severe cardiac fibrosis, higher levels of heart hypertrophic markers, increased inflammation and worse cardiac function, as compared to WT mice. Interestingly, HFD-fed ATF3-cKO mice display increased hyperglycemia and reduced glucose tolerance, despite higher blood insulin levels, as compared to HFD-fed WT mice. Elevated levels of the cardiac inflammatory cytokines IL-6 and TNFa leading to impaired insulin signalling may partially explain the peripheral glucose intolerance. Conclusions Cardiac ATF3 has a protective role in dampening the HFD-induced cardiac remodeling processes. ATF3 exerts both local and systemic effects related to T2D-induced cardiomyopathy. This study provides a strong relationship between heart remodeling processes and blood glucose homeostasis.
AB - Aims Obesity and type 2 diabetes (T2D) trigger a harmful stress-induced cardiac remodeling process known as cardiomyopathy. These diseases represent a serious and widespread health problem in the Western world; however the underlying molecular basis is not clear. ATF3 is an 'immediate early' gene whose expression is highly and transiently induced in response to multiple stressors such as metabolic, oxidative, endoplasmic reticulum and inflammation, stressors that are involved in T2D cardiomyopathy. The role of ATF3 in diabetic cardiomyopathy is currently unknown. Our research has aimed to study the effect of ATF3 expression on cardiomyocytes, heart function and glucose homeostasis in an obesity-induced T2D mouse model. Methods and results We used wild type mice (WT) as well as mutant mice with a cardiac-specific ATF3 deficiency (ATF3-cKO). Mice were fed a high-fat diet (HFD) for 15 weeks. HFD induced high ATF3 expression in cardiomyocytes. Mice were examined for cardiac remodeling processes and the diabetic state was assessed. HFD-fed ATF3-cKO mice exhibited severe cardiac fibrosis, higher levels of heart hypertrophic markers, increased inflammation and worse cardiac function, as compared to WT mice. Interestingly, HFD-fed ATF3-cKO mice display increased hyperglycemia and reduced glucose tolerance, despite higher blood insulin levels, as compared to HFD-fed WT mice. Elevated levels of the cardiac inflammatory cytokines IL-6 and TNFa leading to impaired insulin signalling may partially explain the peripheral glucose intolerance. Conclusions Cardiac ATF3 has a protective role in dampening the HFD-induced cardiac remodeling processes. ATF3 exerts both local and systemic effects related to T2D-induced cardiomyopathy. This study provides a strong relationship between heart remodeling processes and blood glucose homeostasis.
KW - ATF3
KW - Cardiac remodeling
KW - Cytokines
KW - High fat diet
KW - Type 2 diabetes
UR - http://www.scopus.com/inward/record.url?scp=85015207416&partnerID=8YFLogxK
U2 - 10.1093/cvr/cvw228
DO - 10.1093/cvr/cvw228
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85015207416
SN - 0008-6363
VL - 113
SP - 134
EP - 146
JO - Cardiovascular Research
JF - Cardiovascular Research
IS - 2
ER -