B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under Hidden Confounding

Miruna Oprescu, Jacob Dorn, Marah Ghoummaid, Andrew Jesson, Nathan Kallus, Uri Shalit

Research output: Contribution to journalConference articlepeer-review

3 Scopus citations


Estimating heterogeneous treatment effects from observational data is a crucial task across many fields, helping policy and decision-makers take better actions. There has been recent progress on robust and efficient methods for estimating the conditional average treatment effect (CATE) function, but these methods often do not take into account the risk of hidden confounding, which could arbitrarily and unknowingly bias any causal estimate based on observational data. We propose a meta-learner called the B-Learner, which can efficiently learn sharp bounds on the CATE function under limits on the level of hidden confounding. We derive the B-Learner by adapting recent results for sharp and valid bounds of the average treatment effect (Dorn et al., 2021) into the framework given by Kallus & Oprescu (2023) for robust and model-agnostic learning of conditional distributional treatment effects. The B-Learner can use any function estimator such as random forests and deep neural networks, and we prove its estimates are valid, sharp, efficient, and have a quasi-oracle property with respect to the constituent estimators under more general conditions than existing methods. Semi-synthetic experimental comparisons validate the theoretical findings, and we use real-world data demonstrate how the method might be used in practice.

Original languageEnglish
Pages (from-to)26599-26618
Number of pages20
JournalProceedings of Machine Learning Research
StatePublished - 2023
Event40th International Conference on Machine Learning, ICML 2023 - Honolulu, United States
Duration: 23 Jul 202329 Jul 2023

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability


Dive into the research topics of 'B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under Hidden Confounding'. Together they form a unique fingerprint.

Cite this