TY - GEN

T1 - Computability in anonymous networks

T2 - 41st International Colloquium on Automata, Languages, and Programming, ICALP 2014

AU - Emek, Yuval

AU - Seidel, Jochen

AU - Wattenhofer, Roger

PY - 2014

Y1 - 2014

N2 - What can be computed in an anonymous network, where nodes are not equipped with unique identifiers? It turns out that the answer to this question depends on the commitment of the nodes to their first computed output value: Two classes of problems solvable in anonymous networks are defined, where in the first class nodes are allowed to revoke their outputs and in the second class they are not. These two classes are then related to the class of all centrally solvable network problems, observing that the three classes form a strict linear hierarchy, and for several classic and/or characteristic problems in distributed computing, we determine the exact class to which they belong. Does this hierarchy exhibit complete problems? We answer this question in the affirmative by introducing the concept of a distributed oracle, thus establishing a more fine grained classification for distributed computability which we apply to the classic/characteristic problems. Among our findings is the observation that the three classes are characterized by the three pillars of distributed computing, namely, local symmetry breaking, coordination, and leader election.

AB - What can be computed in an anonymous network, where nodes are not equipped with unique identifiers? It turns out that the answer to this question depends on the commitment of the nodes to their first computed output value: Two classes of problems solvable in anonymous networks are defined, where in the first class nodes are allowed to revoke their outputs and in the second class they are not. These two classes are then related to the class of all centrally solvable network problems, observing that the three classes form a strict linear hierarchy, and for several classic and/or characteristic problems in distributed computing, we determine the exact class to which they belong. Does this hierarchy exhibit complete problems? We answer this question in the affirmative by introducing the concept of a distributed oracle, thus establishing a more fine grained classification for distributed computability which we apply to the classic/characteristic problems. Among our findings is the observation that the three classes are characterized by the three pillars of distributed computing, namely, local symmetry breaking, coordination, and leader election.

UR - http://www.scopus.com/inward/record.url?scp=84904186419&partnerID=8YFLogxK

U2 - 10.1007/978-3-662-43951-7_16

DO - 10.1007/978-3-662-43951-7_16

M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???

AN - SCOPUS:84904186419

SN - 9783662439500

T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

SP - 183

EP - 195

BT - Automata, Languages, and Programming - 41st International Colloquium, ICALP 2014, Proceedings

Y2 - 8 July 2014 through 11 July 2014

ER -