TY - GEN
T1 - Computationally-Efficient Roadmap-based Inspection Planning via Incremental Lazy Search
AU - Fu, Mengyu
AU - Salzman, Oren
AU - Alterovitz, Ron
N1 - Publisher Copyright:
© 2021 IEEE
PY - 2021
Y1 - 2021
N2 - The inspection-planning problem calls for computing motions for a robot that allow it to inspect a set of points of interest (POIs) while considering plan quality (e.g., plan length). This problem has applications across many domains where robots can help with inspection, including infrastructure maintenance, construction, and surgery. Incremental Random Inspection-roadmap Search (IRIS) is an asymptotically-optimal inspection planner that was shown to compute higher-quality inspection plans orders of magnitudes faster than the prior state-of-the-art method. In this paper, we significantly accelerate the performance of IRIS to broaden its applicability to more challenging real-world applications. A key computational challenge that IRIS faces is effectively searching roadmaps for inspection plans-a procedure that dominates its running time. In this work, we show how to incorporate lazy edge-evaluation techniques into IRIS's search algorithm and how to reuse search efforts when a roadmap undergoes local changes. These enhancements, which do not compromise IRIS's asymptotic optimality, enable us to compute inspection plans much faster than the original IRIS. We apply IRIS with the enhancements to simulated bridge inspection and surgical inspection tasks and show that our new algorithm for some scenarios can compute similar-quality inspection plans 570× faster than prior work.
AB - The inspection-planning problem calls for computing motions for a robot that allow it to inspect a set of points of interest (POIs) while considering plan quality (e.g., plan length). This problem has applications across many domains where robots can help with inspection, including infrastructure maintenance, construction, and surgery. Incremental Random Inspection-roadmap Search (IRIS) is an asymptotically-optimal inspection planner that was shown to compute higher-quality inspection plans orders of magnitudes faster than the prior state-of-the-art method. In this paper, we significantly accelerate the performance of IRIS to broaden its applicability to more challenging real-world applications. A key computational challenge that IRIS faces is effectively searching roadmaps for inspection plans-a procedure that dominates its running time. In this work, we show how to incorporate lazy edge-evaluation techniques into IRIS's search algorithm and how to reuse search efforts when a roadmap undergoes local changes. These enhancements, which do not compromise IRIS's asymptotic optimality, enable us to compute inspection plans much faster than the original IRIS. We apply IRIS with the enhancements to simulated bridge inspection and surgical inspection tasks and show that our new algorithm for some scenarios can compute similar-quality inspection plans 570× faster than prior work.
UR - http://www.scopus.com/inward/record.url?scp=85124359190&partnerID=8YFLogxK
U2 - 10.1109/ICRA48506.2021.9561653
DO - 10.1109/ICRA48506.2021.9561653
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:85124359190
T3 - Proceedings - IEEE International Conference on Robotics and Automation
SP - 7449
EP - 7456
BT - 2021 IEEE International Conference on Robotics and Automation, ICRA 2021
T2 - 2021 IEEE International Conference on Robotics and Automation, ICRA 2021
Y2 - 30 May 2021 through 5 June 2021
ER -