Abstract
In this paper, we introduce Vote Cut, an innovative method for unsupervised object discovery that leverages feature representations from multiple self-supervised models. VoteCut employs normalized-cut based graph partitioning, clustering and a pixel voting approach. Additionally, We present CuVLER (Cut-Vote-and-LEaRn), a zero-shot model, trained using pseudo-labels, generated by Vote Cut, and a novel soft target loss to refine segmentation accuracy. Through rigorous evaluations across multiple datasets and several unsupervised setups, our methods demonstrate significant improvements in comparison to previous state-of-the-art models. Our ablation studies further highlight the contributions of each component, revealing the robustness and efficacy of our approach. Collectively, VoteCut and CuVLER pave the way for future advancements in image segmentation. The project code is available on GitHub at https://github.com/shahaf-arica/CuVLER
Original language | English |
---|---|
Pages (from-to) | 23105-23114 |
Number of pages | 10 |
Journal | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
DOIs | |
State | Published - 2024 |
Event | 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024 - Seattle, United States Duration: 16 Jun 2024 → 22 Jun 2024 |
Keywords
- DINO
- Segmentation
- Self-supervised Models
- Unsupervised Object Discovery
- Zero-shot Learning
ASJC Scopus subject areas
- Software
- Computer Vision and Pattern Recognition