Exploration-Driven Policy Optimization in RLHF: Theoretical Insights on Efficient Data Utilization

Yihan Du, Anna Winnicki, Gal Dalal, Shie Mannor, R. Srikant

Research output: Contribution to journalConference articlepeer-review

Abstract

Reinforcement Learning from Human Feedback (RLHF) has achieved impressive empirical successes while relying on a small amount of human feedback. However, there is limited theoretical justification for this phenomenon. Additionally, most recent studies focus on value-based algorithms despite the recent empirical successes of policy-based algorithms. In this work, we consider an RLHF algorithm based on policy optimization (PO-RLHF). The algorithm is based on the popular Policy Cover-Policy Gradient (PC-PG) algorithm, which assumes knowledge of the reward function. In PO-RLHF, knowledge of the reward function is not assumed, and the algorithm uses trajectory-based comparison feedback to infer the reward function. We provide performance bounds for PO-RLHF with low query complexity, which provides insight into why a small amount of human feedback may be sufficient to achieve good performance with RLHF. A key novelty is a trajectory-level elliptical potential analysis, which bounds the reward estimation error when comparison feedback (rather than numerical reward observation) is given. We provide and analyze algorithms PG-RLHF and NN-PG-RLHF for two settings: linear and neural function approximation, respectively.

Original languageEnglish
Pages (from-to)11830-11887
Number of pages58
JournalProceedings of Machine Learning Research
Volume235
StatePublished - 2024
Externally publishedYes
Event41st International Conference on Machine Learning, ICML 2024 - Vienna, Austria
Duration: 21 Jul 202427 Jul 2024

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Exploration-Driven Policy Optimization in RLHF: Theoretical Insights on Efficient Data Utilization'. Together they form a unique fingerprint.

Cite this