Hybrid acrylated chitosan and thiolated pectin cross-linked hydrogels with tunable properties

Shaked Eliyahu, Alexandra Galitsky, Esther Ritov, Havazelet Bianco-Peled

Research output: Contribution to journalArticlepeer-review

Abstract

We developed and characterized a new hydrogel system based on the physical and chemical interactions of pectin partially modified with thiol groups and chitosan modified with acrylate end groups. Gelation occurred at high pectin thiol ratios, indicating that a low acrylated chitosan concentration in the hydrogel had a profound effect on the cross-linking. Turbidity, Fourier transform infrared spectroscopy, and free thiol determination analyses were performed to determine the relationships of the different bonds inside the gel. At low pH values below the pKa of chitosan, more electrostatic interactions were formed between opposite charges, but at high pH values, the Michael-type addition reaction between acrylate and thiol took place, creating harder hydrogels. Swelling experiments and Young’s modulus measurements were performed to study the structure and properties of the resultant hydrogels. The nanostructure was examined using small-angle X-ray scattering. The texture profile analysis showed a unique property of hydrogel adhesiveness. By implementing changes in the preparation procedure, we controlled the hydrogel properties. This hybrid hydrogel system can be a good candidate for a wide range of biomedical applications, such as a mucosal biomimetic surface for mucoadhesive testing.

Original languageEnglish
Article number266
Pages (from-to)1-17
Number of pages17
JournalPolymers
Volume13
Issue number2
DOIs
StatePublished - 2 Jan 2021

Keywords

  • Acrylated chitosan
  • Hybrid hydrogels
  • Mucosal mimetic
  • Polysaccharide hydrogels
  • Thiolated pectin

ASJC Scopus subject areas

  • General Chemistry
  • Polymers and Plastics

Fingerprint

Dive into the research topics of 'Hybrid acrylated chitosan and thiolated pectin cross-linked hydrogels with tunable properties'. Together they form a unique fingerprint.

Cite this