Lesions to both somatic and affective pain pathways lead to decreased salience network connectivity

Itamar Jalon, Assaf Berger, Ben Shofty, Noam Goldway, Moran Artzi, Guy Gurevitch, Uri Hochberg, Rotem Tellem, Talma Hendler, Tal Gonen, Ido Strauss

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Human pain is a salient stimulus composed of two main components: a sensory/somatic component, carrying peripheral nociceptive sensation via the spinothalamic tract and brainstem nuclei to the thalamus and then to sensory cortical regions, and an affective (suffering) component, where information from central thalamic nuclei is carried to the anterior insula, dorsal anterior cingulate cortex and other regions. While the sensory component processes information about stimulus location and intensity, the affective component processes information regarding pain-related expectations, motivation to reduce pain and pain unpleasantness. Unlike investigations of acute pain that are based on the introduction of real-time stimulus during brain recordings, chronic pain investigations are usually based on longitudinal and case-control studies, which are limited in their ability to infer the functional network topology of chronic pain. In the current study, we utilized the unique opportunity to target the CNS’s pain pathways in two different hierarchical locations to establish causality between pain relief and specific connectivity changes seen within the salience and sensorimotor networks. We examined how lesions to the affective and somatic pain pathways affect resting-state network topology in cancer patients suffering from severe intractable pain. Two procedures have been employed: percutaneous cervical cordotomy (n = 15), hypothesized to disrupt the transmission of the sensory component of pain along the spinothalamic tract, or stereotactic cingulotomy (n = 7), which refers to bilateral intracranial ablation of an area in the dorsal anterior cingulate cortex and is known to ameliorate the affective component of pain. Both procedures led to immediate significant alleviation of experienced pain and decreased functional connectivity within the salience network. However, only the sensory procedure (cordotomy) led to decreased connectivity within the sensorimotor network. Thus, our results support the existence of two converging systems relaying experienced pain, showing that pain-related suffering can be either directly influenced by interfering with the affective pathway or indirectly influenced by interfering with the ascending spinothalamic tract.

Original languageEnglish
Pages (from-to)2153-2162
Number of pages10
JournalBrain
Volume146
Issue number5
DOIs
StatePublished - 1 May 2023
Externally publishedYes

Keywords

  • fMRI
  • lesions
  • pain
  • salience
  • Brain
  • Brain Mapping/methods
  • Humans
  • Magnetic Resonance Imaging/methods
  • Parietal Lobe
  • Chronic Pain

ASJC Scopus subject areas

  • Clinical Neurology

Fingerprint

Dive into the research topics of 'Lesions to both somatic and affective pain pathways lead to decreased salience network connectivity'. Together they form a unique fingerprint.

Cite this