TY - JOUR
T1 - Methodology and first-order algorithms for solving nonsmooth and non-strongly convex bilevel optimization problems
AU - Doron, Lior
AU - Shtern, Shimrit
N1 - Publisher Copyright:
© 2022, Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.
PY - 2023/9
Y1 - 2023/9
N2 - Simple bilevel problems are optimization problems in which we want to find an optimal solution to an inner problem that minimizes an outer objective function. Such problems appear in many machine learning and signal processing applications as a way to eliminate undesirable solutions. In our work, we suggest a new approach that is designed for bilevel problems with simple outer functions, such as the l1 norm, which are not required to be either smooth or strongly convex. In our new ITerative Approximation and Level-set EXpansion (ITALEX) approach, we alternate between expanding the level-set of the outer function and approximately optimizing the inner problem over this level-set. We show that optimizing the inner function through first-order methods such as proximal gradient and generalized conditional gradient results in a feasibility convergence rate of O(1/k), which up to now was a rate only achieved by bilevel algorithms for smooth and strongly convex outer functions. Moreover, we prove an O(1/k) rate of convergence for the outer function, contrary to existing methods, which only provide asymptotic guarantees. We demonstrate this performance through numerical experiments.
AB - Simple bilevel problems are optimization problems in which we want to find an optimal solution to an inner problem that minimizes an outer objective function. Such problems appear in many machine learning and signal processing applications as a way to eliminate undesirable solutions. In our work, we suggest a new approach that is designed for bilevel problems with simple outer functions, such as the l1 norm, which are not required to be either smooth or strongly convex. In our new ITerative Approximation and Level-set EXpansion (ITALEX) approach, we alternate between expanding the level-set of the outer function and approximately optimizing the inner problem over this level-set. We show that optimizing the inner function through first-order methods such as proximal gradient and generalized conditional gradient results in a feasibility convergence rate of O(1/k), which up to now was a rate only achieved by bilevel algorithms for smooth and strongly convex outer functions. Moreover, we prove an O(1/k) rate of convergence for the outer function, contrary to existing methods, which only provide asymptotic guarantees. We demonstrate this performance through numerical experiments.
KW - Bilevel optimization
KW - Complexity analysis
KW - Convex minimization
KW - First-order methods
UR - http://www.scopus.com/inward/record.url?scp=85144924058&partnerID=8YFLogxK
U2 - 10.1007/s10107-022-01914-4
DO - 10.1007/s10107-022-01914-4
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85144924058
SN - 0025-5610
VL - 201
SP - 521
EP - 558
JO - Mathematical Programming
JF - Mathematical Programming
IS - 1-2
ER -