TY - GEN
T1 - Multi-objective Search via Lazy and Efficient Dominance Checks
AU - Hernández, Carlos
AU - Yeoh, William
AU - Baier, Jorge A.
AU - Felner, Ariel
AU - Salzman, Oren
AU - Zhang, Han
AU - Chan, Shao Hung
AU - Koenig, Sven
N1 - Publisher Copyright:
© 2023 International Joint Conferences on Artificial Intelligence. All rights reserved.
PY - 2023
Y1 - 2023
N2 - Multi-objective search can be used to model many real-world problems that require finding Pareto-optimal paths from a specified start state to a specified goal state, while considering different cost metrics such as distance, time, and fuel. The performance of multi-objective search can be improved by making dominance checking-an operation necessary to determine whether or not a path dominates another-more efficient. This was shown in practice by BOA*, a state-of-the-art bi-objective search algorithm, which outperforms previously existing bi-objective search algorithms in part because it adopts a lazy approach towards dominance checking. EMOA*, a recent multi-objective search algorithm, generalizes BOA* to more-than-two objectives using AVL trees for dominance checking. In this paper, we first propose Linear-Time Multi-Objective A* (LTMOA*), a multi-objective search algorithm that implements more efficient dominance checking than EMOA* using simple data structures like arrays. We then propose LazyLTMOA*, which employs a lazier approach by removing dominance checking during node generation. Our experimental results show that LazyLTMOA* outperforms EMOA* by up to an order of magnitude in terms of runtime.
AB - Multi-objective search can be used to model many real-world problems that require finding Pareto-optimal paths from a specified start state to a specified goal state, while considering different cost metrics such as distance, time, and fuel. The performance of multi-objective search can be improved by making dominance checking-an operation necessary to determine whether or not a path dominates another-more efficient. This was shown in practice by BOA*, a state-of-the-art bi-objective search algorithm, which outperforms previously existing bi-objective search algorithms in part because it adopts a lazy approach towards dominance checking. EMOA*, a recent multi-objective search algorithm, generalizes BOA* to more-than-two objectives using AVL trees for dominance checking. In this paper, we first propose Linear-Time Multi-Objective A* (LTMOA*), a multi-objective search algorithm that implements more efficient dominance checking than EMOA* using simple data structures like arrays. We then propose LazyLTMOA*, which employs a lazier approach by removing dominance checking during node generation. Our experimental results show that LazyLTMOA* outperforms EMOA* by up to an order of magnitude in terms of runtime.
UR - http://www.scopus.com/inward/record.url?scp=85170395566&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:85170395566
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 7223
EP - 7230
BT - Proceedings of the 32nd International Joint Conference on Artificial Intelligence, IJCAI 2023
A2 - Elkind, Edith
T2 - 32nd International Joint Conference on Artificial Intelligence, IJCAI 2023
Y2 - 19 August 2023 through 25 August 2023
ER -