On Progress in Exploring Controlled Viscous Limit-Cycle Oscillations in Modified Glauert Airfoil

Ethan Deweese, Lap Nguyen, Erik Vataker, William Mackunis, Vladimir Golubev, Ron Efrati, Oksana Stalnov

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The paper reports on the progress in the development of a novel robust, nonlinear flow control technology that employs an array of synthetic-jet actuators (SJAs) embedded in 2-DOF, elastically mounted, optimized Modified Glauert (MG) airfoil design in order to control limit cycle oscillations (LCO) at low subsonic flow regimes. The focus here is on the conceptual design of the wind energy harvesting system that employs, e.g., a piezoelectric device to extract energy from plunging LCO, with the closed-loop controller being capable to sustain the required LCO amplitudes over a wide range of wind speeds. The current high-fidelity studies first include validation of the static-airfoil aerodynamic predictions against results obtained from the concurrent experimental campaign. Next, a set of parametric 1-DOF and 2-DOF numerical analyses examine open-loop and closed-loop LCO control strategies that employ the ability of MG airfoil to sustain LCO at subcritical velocities due to natural separation-induced flutter.

Original languageEnglish
Title of host publicationAIAA SciTech Forum and Exposition, 2024
DOIs
StatePublished - 2024
EventAIAA SciTech Forum and Exposition, 2024 - Orlando, United States
Duration: 8 Jan 202412 Jan 2024

Publication series

NameAIAA SciTech Forum and Exposition, 2024

Conference

ConferenceAIAA SciTech Forum and Exposition, 2024
Country/TerritoryUnited States
CityOrlando
Period8/01/2412/01/24

ASJC Scopus subject areas

  • Aerospace Engineering

Fingerprint

Dive into the research topics of 'On Progress in Exploring Controlled Viscous Limit-Cycle Oscillations in Modified Glauert Airfoil'. Together they form a unique fingerprint.

Cite this