Planning, Learning and Reasoning Framework for Robot Truck Unloading

Fahad Islam, Anirudh Vemula, Sung Kyun Kim, Andrew Dornbush, Oren Salzman, Maxim Likhachev

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We consider the task of autonomously unloading boxes from trucks using an industrial manipulator robot. There are multiple challenges that arise: (1) real-time motion planning for a complex robotic system carrying two articulated mechanisms, an arm and a scooper, (2) decision-making in terms of what action to execute next given imperfect information about boxes such as their masses, (3) accounting for the sequential nature of the problem where current actions affect future state of the boxes, and (4) real-time execution that interleaves high-level decision-making with lower level motion planning. In this work, we propose a planning, learning, and reasoning framework to tackle these challenges, and describe its components including motion planning, belief space planning for offline learning, online decision-making based on offline learning, and an execution module to combine decision-making with motion planning. We analyze the performance of the framework on real-world scenarios. In particular, motion planning and execution modules are evaluated in simulation and on a real robot, while offline learning and online decision-making are evaluated in simulated real-world scenarios.

Original languageEnglish
Title of host publication2020 IEEE International Conference on Robotics and Automation, ICRA 2020
Pages5011-5017
Number of pages7
ISBN (Electronic)9781728173955
DOIs
StatePublished - May 2020
Externally publishedYes
Event2020 IEEE International Conference on Robotics and Automation, ICRA 2020 - Paris, France
Duration: 31 May 202031 Aug 2020

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2020 IEEE International Conference on Robotics and Automation, ICRA 2020
Country/TerritoryFrance
CityParis
Period31/05/2031/08/20

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Planning, Learning and Reasoning Framework for Robot Truck Unloading'. Together they form a unique fingerprint.

Cite this