Redesigning stochastic environments for maximized utility

Sarah Keren, Avigdor Gal, Erez Karpas, Luis Pineda, Shlomo Zilberstein

Research output: Contribution to conferencePaperpeer-review

Abstract

We present the Utility Maximizing Design (UMD) model for optimally redesigning stochastic environments to achieve maximized performance. This model suits well contemporary applications that involve the design of environments where robots and humans co-exist an co-operate, e.g., vacuum cleaning robot. We discuss two special cases of the UMD model. The first is the equi-reward UMD (ER-UMD) in which the agents and the system share a utility function, such as for the vacuum cleaning robot. The second is the goal recognition design (GRD) setting, discussed in the literature, in which system and agent utilities are independent. To find the set of optimal modifications to apply to a UMD model, we present a generic method, based on heuristic search. After specifying the conditions for optimality in the general case, we present an admissible heuristic for the ER-UMD case. We also present a novel compilation that embeds the redesign process into a planning problem, allowing use of any off-the-shelf solver to find the best way to modify an environment when a design budget is specified. Our evaluation shows the feasibility of the approach using standard benchmarks from the probabilistic planning competition.

Original languageEnglish
Pages4947-4948
Number of pages2
StatePublished - 2017
Event31st AAAI Conference on Artificial Intelligence, AAAI 2017 - San Francisco, United States
Duration: 4 Feb 20175 Feb 2017

Conference

Conference31st AAAI Conference on Artificial Intelligence, AAAI 2017
Country/TerritoryUnited States
CitySan Francisco
Period4/02/175/02/17

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Redesigning stochastic environments for maximized utility'. Together they form a unique fingerprint.

Cite this