Reinforcement Learning Model-Based and Model-Free Paradigms for Optimal Control Problems in Power Systems: Comprehensive Review and Future Directions

Elinor Ginzburg-Ganz, Itay Segev, Alexander Balabanov, Elior Segev, Sivan Kaully Naveh, Ram Machlev, Juri Belikov, Liran Katzir, Sarah Keren, Yoash Levron

Research output: Contribution to journalReview articlepeer-review

Abstract

This paper reviews recent works related to applications of reinforcement learning in power system optimal control problems. Based on an extensive analysis of works in the recent literature, we attempt to better understand the gap between reinforcement learning methods that rely on complete or incomplete information about the model dynamics and data-driven reinforcement learning approaches. More specifically we ask how such models change based on the application or the algorithm, what the currently open theoretical and numerical challenges are in each of the leading applications, and which reinforcement-based control strategies will rise in the following years. The reviewed research works are divided into “model-based” methods and “model-free” methods in order to highlight the current developments and trends within each of these two groups. The optimal control problems reviewed are energy markets, grid stability and control, energy management in buildings, electrical vehicles, and energy storage.

Original languageEnglish
Article number5307
JournalEnergies
Volume17
Issue number21
DOIs
StatePublished - Nov 2024

Keywords

  • control problems
  • energy management
  • model based
  • model free
  • reinforcement learning

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Engineering (miscellaneous)
  • Energy Engineering and Power Technology
  • Energy (miscellaneous)
  • Control and Optimization
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Reinforcement Learning Model-Based and Model-Free Paradigms for Optimal Control Problems in Power Systems: Comprehensive Review and Future Directions'. Together they form a unique fingerprint.

Cite this