SinDDM: A Single Image Denoising Diffusion Model

Vladimir Kulikov, Shahar Yadin, Matan Kleiner, Tomer Michaeli

Research output: Contribution to journalConference articlepeer-review

Abstract

Denoising diffusion models (DDMs) have led to staggering performance leaps in image generation, editing and restoration. However, existing DDMs use very large datasets for training. Here, we introduce a framework for training a DDM on a single image. Our method, which we coin SinDDM, learns the internal statistics of the training image by using a multi-scale diffusion process. To drive the reverse diffusion process, we use a fully-convolutional light-weight denoiser, which is conditioned on both the noise level and the scale. This architecture allows generating samples of arbitrary dimensions, in a coarse-to-fine manner. As we illustrate, SinDDM generates diverse high-quality samples, and is applicable in a wide array of tasks, including style transfer and harmonization. Furthermore, it can be easily guided by external supervision. Particularly, we demonstrate text-guided generation from a single image using a pre-trained CLIP model. Results, code and the Supplementary Material are available on the project's webpage.

Original languageEnglish
Pages (from-to)17920-17930
Number of pages11
JournalProceedings of Machine Learning Research
Volume202
StatePublished - 2023
Event40th International Conference on Machine Learning, ICML 2023 - Honolulu, United States
Duration: 23 Jul 202329 Jul 2023

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'SinDDM: A Single Image Denoising Diffusion Model'. Together they form a unique fingerprint.

Cite this