The action spectra of cone photoreceptors in the turtle (Mauremys caspica) retina

Ido Perlman, Aviran Itzhaki

Research output: Contribution to journalArticlepeer-review

Abstract

Cone photoreceptors in the turtle retina are involved in intricate neuronal interactions with other retinal neurons that modify the responses of the cones to photons absorbed in their outer segments. Therefore, the action spectra of cones strongly depend upon the conditions of measurements. This study describes an attempt to derive the action spectra of turtle cones which are the least distorted by neuronal interactions. To achieve this goal, the photoresponses of cones and horizontal cells were recorded from the turtle retina under different conditions of adaptation using different patterns of the stimulating test flashes. The sensitivity action spectra, derived from small-amplitude (1 mV) photoresponses, were strongly affected by the recording conditions indicating the contributions of multiple neuronal inputs. Action spectra, constructed from large criterion photoresponses, were less distorted by neuronal interactions and better described the spectral properties of the “isolated” cones. The action spectra of the hyperpolarizing inputs to chromaticity-type horizontal cells were derived by stimulating these cells with mixtures of a saturating red light and a monochromatic light of different wavelength and intensity. The action spectra were constructed from the intensity of the addend component needed to “pull down” the depolarizing response to the red component by a fixed criterion. These spectra, measured in red/green and yellow/blue C-type horizontal cells, are suggested to best represent the “isolated” M-cones and S-cones, respectively.

Original languageEnglish
Pages (from-to)243-252
Number of pages10
JournalVisual Neuroscience
Volume11
Issue number2
DOIs
StatePublished - 1 Mar 1994

Keywords

  • Action spectrum
  • Chromaticity-type horizontal cells
  • Cone photoreceptors
  • Light sensitivity
  • Retina
  • Turtle

ASJC Scopus subject areas

  • Physiology
  • Sensory Systems

Fingerprint

Dive into the research topics of 'The action spectra of cone photoreceptors in the turtle (Mauremys caspica) retina'. Together they form a unique fingerprint.

Cite this