TY - JOUR
T1 - The cardiac maladaptive ATF3-dependent cross-talk between cardiomyocytes and macrophages is mediated by the IFNγ-CXCL10-CXCR3 axis
AU - Koren, L.
AU - Barash, U.
AU - Zohar, Y.
AU - Karin, N.
AU - Aronheim, A.
N1 - Publisher Copyright:
© 2016 Elsevier Ireland Ltd
PY - 2017/2/1
Y1 - 2017/2/1
N2 - Rational Pressure overload induces adaptive and maladaptive cardiac remodeling processes in the heart. Part of the maladaptive process is the cross-talk between cardiomyocytes and macrophages which is dependent on the function of the Activating Transcription Factor 3, ATF3. Yet, the molecular mechanism involved in cardiomyocytes-macrophages communication leading to macrophages recruitment to the heart and cardiac maladaptive remodeling is currently unknown. Methods and results Isolated peritoneal macrophages from either wild type or ATF3-KO mice were cultured in serum free medium to collect conditioned medium (CM). CM was used to probe an antibody cytokine/chemokine array. The interferon γ induced protein 10 kDa, CXCL10, was found to be enriched in wild type macrophages CM. Wild type cardiomyocytes treated with CXCL10 in vitro, resulted in significant increase in cell volume as compared to ATF3-KO cardiomyocytes. In vivo, pressure overload was induced by phenylephrine (PE) infusion using micro-osmotic pumps. Consistently, CXCL11 (CXCL10 competitive agonist) and CXCL10 receptor antagonist (AMG487) attenuated PE-dependent maladaptive cardiac remodeling. Significantly, we show that the expression of the CXCL10 receptor, CXCR3, is suppressed in cardiomyocytes and macrophages derived from ATF3-KO mice. CXCR3 is positively regulated by ATF3 through an ATF3 transcription response element found in its proximal promoter. Finally, mice lacking CXCR3 display a significant reduction of cardiac remodeling processes following PE infusion. Conclusions Chronic PE infusion results in a unique cardiomyocytes-macrophages cross-talk that is mediated by IFNγ. Subsequently, macrophages that are recruited to the heart secrete CXCL10 resulting in maladaptive cardiac remodeling mediated by the CXCR3 receptor. ATF3-KO mice escape from PE-dependent maladaptive cardiac remodeling by suppressing the IFNγ-CXCL10-CXCR3 axis at multiple levels.
AB - Rational Pressure overload induces adaptive and maladaptive cardiac remodeling processes in the heart. Part of the maladaptive process is the cross-talk between cardiomyocytes and macrophages which is dependent on the function of the Activating Transcription Factor 3, ATF3. Yet, the molecular mechanism involved in cardiomyocytes-macrophages communication leading to macrophages recruitment to the heart and cardiac maladaptive remodeling is currently unknown. Methods and results Isolated peritoneal macrophages from either wild type or ATF3-KO mice were cultured in serum free medium to collect conditioned medium (CM). CM was used to probe an antibody cytokine/chemokine array. The interferon γ induced protein 10 kDa, CXCL10, was found to be enriched in wild type macrophages CM. Wild type cardiomyocytes treated with CXCL10 in vitro, resulted in significant increase in cell volume as compared to ATF3-KO cardiomyocytes. In vivo, pressure overload was induced by phenylephrine (PE) infusion using micro-osmotic pumps. Consistently, CXCL11 (CXCL10 competitive agonist) and CXCL10 receptor antagonist (AMG487) attenuated PE-dependent maladaptive cardiac remodeling. Significantly, we show that the expression of the CXCL10 receptor, CXCR3, is suppressed in cardiomyocytes and macrophages derived from ATF3-KO mice. CXCR3 is positively regulated by ATF3 through an ATF3 transcription response element found in its proximal promoter. Finally, mice lacking CXCR3 display a significant reduction of cardiac remodeling processes following PE infusion. Conclusions Chronic PE infusion results in a unique cardiomyocytes-macrophages cross-talk that is mediated by IFNγ. Subsequently, macrophages that are recruited to the heart secrete CXCL10 resulting in maladaptive cardiac remodeling mediated by the CXCR3 receptor. ATF3-KO mice escape from PE-dependent maladaptive cardiac remodeling by suppressing the IFNγ-CXCL10-CXCR3 axis at multiple levels.
KW - ATF3
KW - Cardiac remodeling
KW - Cardiomyocytes
KW - Macrophages
KW - Phenylephrine
KW - Pressure overload
UR - http://www.scopus.com/inward/record.url?scp=84995783995&partnerID=8YFLogxK
U2 - 10.1016/j.ijcard.2016.11.159
DO - 10.1016/j.ijcard.2016.11.159
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84995783995
SN - 0167-5273
VL - 228
SP - 394
EP - 400
JO - International Journal of Cardiology
JF - International Journal of Cardiology
ER -