TY - GEN
T1 - Toward Asymptotically-Optimal Inspection Planning via Efficient Near-Optimal Graph Search
AU - Fu, Mengyu
AU - Kuntz, Alan
AU - Salzman, Oren
AU - Alterovitz, Ron
N1 - Publisher Copyright:
© 2019, Robotics: Science and Systems. All rights reserved.
PY - 2019
Y1 - 2019
N2 - Inspection planning, the task of planning motions that allow a robot to inspect a set of points of interest, has applications in domains such as industrial, field, and medical robotics. Inspection planning can be computationally challenging, as the search space over motion plans grows exponentially with the number of points of interest to inspect. We propose a novel method, Incremental Random Inspection-roadmap Search (IRIS), that computes inspection plans whose length and set of successfully inspected points asymptotically converge to those of an optimal inspection plan. IRIS incrementally densifies a motion planning roadmap using sampling-based algorithms, and performs efficient near-optimal graph search over the resulting roadmap as it is generated. We demonstrate IRIS’s efficacy on a simulated planar 5DOF manipulator inspection task and on a medical endoscopic inspection task for a continuum parallel surgical robot in cluttered anatomy segmented from patient CT data. We show that IRIS computes higher-quality inspection plans orders of magnitudes faster than a prior state-of-the-art method.
AB - Inspection planning, the task of planning motions that allow a robot to inspect a set of points of interest, has applications in domains such as industrial, field, and medical robotics. Inspection planning can be computationally challenging, as the search space over motion plans grows exponentially with the number of points of interest to inspect. We propose a novel method, Incremental Random Inspection-roadmap Search (IRIS), that computes inspection plans whose length and set of successfully inspected points asymptotically converge to those of an optimal inspection plan. IRIS incrementally densifies a motion planning roadmap using sampling-based algorithms, and performs efficient near-optimal graph search over the resulting roadmap as it is generated. We demonstrate IRIS’s efficacy on a simulated planar 5DOF manipulator inspection task and on a medical endoscopic inspection task for a continuum parallel surgical robot in cluttered anatomy segmented from patient CT data. We show that IRIS computes higher-quality inspection plans orders of magnitudes faster than a prior state-of-the-art method.
UR - http://www.scopus.com/inward/record.url?scp=85086564357&partnerID=8YFLogxK
U2 - 10.15607/RSS.2019.XV.057
DO - 10.15607/RSS.2019.XV.057
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:85086564357
SN - 9780992374754
T3 - Robotics: Science and Systems
BT - Robotics
A2 - Bicchi, Antonio
A2 - Kress-Gazit, Hadas
A2 - Hutchinson, Seth
T2 - 15th Robotics: Science and Systems, RSS 2019
Y2 - 22 June 2019 through 26 June 2019
ER -