Towards Predicting Fine Finger Motions from Ultrasound Images via Kinematic Representation

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

A central challenge in building robotic prostheses is the creation of a sensor-based system able to read physiological signals from the lower limb and instruct a robotic hand to perform various tasks. Existing systems typically perform discrete gestures such as pointing or grasping, by employing electromyography (EMG) or ultrasound (US) technologies to analyze muscle states. While estimating finger gestures has been done in the past by detecting prominent gestures, we are interested in detection, or inference, done in the context of fine motions that evolve over time. Examples include motions occurring when performing fine and dexterous tasks such as keyboard typing or piano playing. We consider this task as an important step towards higher adoption rates of robotic prostheses among arm amputees, as it has the potential to dramatically increase functionality in performing daily tasks. To this end, we present an end-to-end robotic system, which can successfully infer fine finger motions. This is achieved by modeling the hand as a robotic manipulator and using it as an intermediate representation to encode muscles' dynamics from a sequence of US images. We evaluated our method by collecting data from a group of subjects and demonstrating how it can be used to replay music played or text typed. To the best of our knowledge, this is the first study demonstrating these downstream tasks within an end-to-end system.

Original languageEnglish
Title of host publicationProceedings - ICRA 2023
Subtitle of host publicationIEEE International Conference on Robotics and Automation
Pages12645-12651
Number of pages7
ISBN (Electronic)9798350323658
DOIs
StatePublished - 2023
Event2023 IEEE International Conference on Robotics and Automation, ICRA 2023 - London, United Kingdom
Duration: 29 May 20232 Jun 2023

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2023-May
ISSN (Print)1050-4729

Conference

Conference2023 IEEE International Conference on Robotics and Automation, ICRA 2023
Country/TerritoryUnited Kingdom
CityLondon
Period29/05/232/06/23

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Towards Predicting Fine Finger Motions from Ultrasound Images via Kinematic Representation'. Together they form a unique fingerprint.

Cite this