Twenty-two new approximate proof labeling schemes

Yuval Emek, Yuval Gil

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Introduced by Korman, Kutten, and Peleg (Distributed Computing 2005), a proof labeling scheme (PLS) is a system dedicated to verifying that a given configuration graph satisfies a certain property. It is composed of a centralized prover, whose role is to generate a proof for yes-instances in the form of an assignment of labels to the nodes, and a distributed verifier, whose role is to verify the validity of the proof by local means and accept it if and only if the property is satisfied. To overcome lower bounds on the label size of PLSs for certain graph properties, Censor-Hillel, Paz, and Perry (SIROCCO 2017) introduced the notion of an approximate proof labeling scheme (APLS) that allows the verifier to accept also some no-instances as long as they are not “too far” from satisfying the property. The goal of the current paper is to advance our understanding of the power and limitations of APLSs. To this end, we formulate the notion of APLSs in terms of distributed graph optimization problems (OptDGPs) and develop two generic methods for the design of APLSs. These methods are then applied to various classic OptDGPs, obtaining twenty-two new APLSs. An appealing characteristic of our APLSs is that they are all sequentially efficient in the sense that both the prover and the verifier are required to run in (sequential) polynomial time. On the negative side, we establish “combinatorial” lower bounds on the label size for some of the aforementioned OptDGPs that demonstrate the optimality of our corresponding APLSs. For other OptDGPs, we establish conditional lower bounds that exploit the sequential efficiency of the verifier alone (under the assumption that NP 6= co-NP) or that of both the verifier and the prover (under the assumption that P 6= NP, with and without the unique games conjecture).

Original languageEnglish
Title of host publication34th International Symposium on Distributed Computing, DISC 2020
EditorsHagit Attiya
ISBN (Electronic)9783959771689
DOIs
StatePublished - 1 Oct 2020
Event34th International Symposium on Distributed Computing, DISC 2020 - Virtual, Online
Duration: 12 Oct 202016 Oct 2020

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume179
ISSN (Print)1868-8969

Conference

Conference34th International Symposium on Distributed Computing, DISC 2020
CityVirtual, Online
Period12/10/2016/10/20

Keywords

  • Approximation algorithms
  • Distributed graph problems
  • Proof labeling schemes

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'Twenty-two new approximate proof labeling schemes'. Together they form a unique fingerprint.

Cite this