Computationally private randomizing polynomials and their applications

Benny Applebaum, Yuval Ishai, Eyal Kushilevitz

Research output: Contribution to journalArticlepeer-review

77 Scopus citations

Abstract

Randomizing polynomials allow representing a function f(x) by a low-degree randomized mapping f̂(x, r) whose output distribution on an input x is a randomized encoding of f(x). It is known that any function f in uniform ⊕L/poly (and in particular in NC1) can be efficiently represented by degree-3 randomizing polynomials. Such a degree-3 representation gives rise to an NC 4 0 representation, in which every bit of the output depends on only four bits of the input. In this paper, we study the relaxed notion of computationally private randomizing polynomials, where the output distribution of f̂(x, r) should only be computationally indistinguishable from a randomized encoding of f(x). We construct degree-3 randomizing polynomials of this type for every polynomial-time computable function, assuming the existence of a cryptographic pseudorandom generator (PRG) in uniform ⊕L/poly. (The latter assumption is implied by most standard intractability assumptions used in cryptography.) This result is obtained by combining a variant of Yao's garbled circuit technique with previous "information-theoretic" constructions of randomizing polynomials. We present several applications of computationally private randomizing polynomials in cryptography. In particular, we relax the sufficient assumptions for parallel constructions of cryptographic primitives, obtain new parallel reductions between primitives, and simplify the design of constant-round protocols for multiparty computation.

Original languageEnglish
Pages (from-to)115-162
Number of pages48
JournalComputational Complexity
Volume15
Issue number2
DOIs
StatePublished - Jun 2006

Keywords

  • Constant depth circuits
  • Cryptography
  • Garbled circuit
  • NC
  • Parallel construction
  • Randomizing polynomials

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Mathematics
  • Computational Theory and Mathematics
  • Computational Mathematics

Fingerprint

Dive into the research topics of 'Computationally private randomizing polynomials and their applications'. Together they form a unique fingerprint.

Cite this