Conditional- not Displacement: Fast Multioscillator Control with a Single Qubit

Asaf A. Diringer, Eliya Blumenthal, Avishay Grinberg, Liang Jiang, Shay Hacohen-Gourgy

Research output: Contribution to journalArticlepeer-review

Abstract

Bosonic encoding is an approach for quantum information processing, promising lower hardware overhead by encoding in the many levels of a harmonic-oscillator mode. Scaling to multiple modes requires weak interaction for independent control, yet strong interaction for fast control. Applying fast and efficient universal control on multiple modes remains an open problem. Surprisingly, we find that displacements conditioned on the state of a single-qubit ancilla coupled to multiple harmonic oscillators are sufficient for universal control. We present the conditional-no operation concept, which can be used to reduce the duration of entangling gates. Within this guiding concept, we develop the conditional-not displacement control method which enables fast generation and control of bosonic states in multimode systems weakly coupled to a single-ancilla qubit. Our method is fast despite the weak ancilla coupling. The weak coupling in turn allows for excellent separability and thus independent control. We demonstrate our control on a superconducting transmon qubit weakly coupled to a multimode superconducting cavity. We create both entangled and separable cat states in different modes of the multimode cavity, showing entangling operations at low crosstalk while maintaining independent control of the different modes. We show that the operation time is not limited by the inverse of the coupling rate, which is the typical timescale, and we exceed it by almost 2 orders of magnitude. We verify our results with an efficient method for measurement of the multimode characteristic function which employs our conditional-not displacement. Our results inspire a new approach toward general entangling operations and allow for fast and efficient multimode bosonic encoding and measurement.

Original languageEnglish
Article number011055
JournalPhysical Review X
Volume14
Issue number1
DOIs
StatePublished - Jan 2024

ASJC Scopus subject areas

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Conditional- not Displacement: Fast Multioscillator Control with a Single Qubit'. Together they form a unique fingerprint.

Cite this