Two-round MPC: Information-theoretic and black-box

Sanjam Garg, Yuval Ishai, Akshayaram Srinivasan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

21 Scopus citations

Abstract

We continue the study of protocols for secure multiparty computation (MPC) that require only two rounds of interaction. The recent works of Garg and Srinivasan (Eurocrypt 2018) and Benhamouda and Lin (Eurocrypt 2018) essentially settle the question by showing that such protocols are implied by the minimal assumption that a two-round oblivious transfer (OT) protocol exists. However, these protocols inherently make a non-black-box use of the underlying OT protocol, which results in poor concrete efficiency. Moreover, no analogous result was known in the information-theoretic setting, or alternatively based on one-way functions, given an OT correlations setup or an honest majority. Motivated by these limitations, we study the possibility of obtaining information-theoretic and “black-box” implementations of two-round MPC protocols. We obtain the following results: Two-round MPC from OT correlations. Given an OT correlations setup, we get protocols that make a black-box use of a pseudorandom generator (PRG) and are secure against a malicious adversary corrupting an arbitrary number of parties. For a semi-honest adversary, we get similar information-theoretic protocols for branching programs.New NIOT constructions. Towards realizing OT correlations, we extend the DDH-based non-interactive OT (NIOT) protocol of Bellare and Micali (Crypto’89) to the malicious security model, and present new NIOT constructions from the Quadratic Residuosity Assumption (QRA) and the Learning With Errors (LWE) assumption.Two-round black-box MPC with strong PKI setup. Combining the two previous results, we get two-round MPC protocols that make a black-box use of any DDH-hard or QRA-hard group. The protocols can offer security against a malicious adversary, and require a PKI setup that depends on the number of parties and the size of computation, but not on the inputs or the identities of the participating parties.Two-round honest-majority MPC from secure channels. Given secure point-to-point channels, we get protocols that make a black-box use of a pseudorandom generator (PRG), as well as information-theoretic protocols for branching programs. These protocols can tolerate a semi-honest adversary corrupting a strict minority of the parties, where in the information-theoretic case the complexity is exponential in the number of parties.

Original languageEnglish
Title of host publicationTheory of Cryptography - 16th International Conference, TCC 2018, Proceedings
EditorsAmos Beimel, Stefan Dziembowski
Pages123-151
Number of pages29
DOIs
StatePublished - 2018
Event16th Theory of Cryptography Conference, TCC 2018 - Panaji, India
Duration: 11 Nov 201814 Nov 2018

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11239 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference16th Theory of Cryptography Conference, TCC 2018
Country/TerritoryIndia
CityPanaji
Period11/11/1814/11/18

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Two-round MPC: Information-theoretic and black-box'. Together they form a unique fingerprint.

Cite this